首页> 外文OA文献 >A Novel Scoring Approach for Protein Co-Purification Data Reveals High Interaction Specificity
【2h】

A Novel Scoring Approach for Protein Co-Purification Data Reveals High Interaction Specificity

机译:蛋白质共纯化数据的新型评分方法揭示了高相互作用特异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale protein interaction networks (PINs) have typically been discerned using affinity purification followed by mass spectrometry (AP/MS) and yeast two-hybrid (Y2H) techniques. It is generally recognized that Y2H screens detect direct binary interactions while the AP/MS method captures co-complex associations; however, the latter technique is known to yield prevalent false positives arising from a number of effects, including abundance. We describe a novel approach to compute the propensity for two proteins to co-purify in an AP/MS data set, thereby allowing us to assess the detected level of interaction specificity by analyzing the corresponding distribution of interaction scores. We find that two recent AP/MS data sets of yeast contain enrichments of specific, or high-scoring, associations as compared to commensurate random profiles, and that curated, direct physical interactions in two prominent data bases have consistently high scores. Our scored interaction data sets are generally more comprehensive than those of previous studies when compared against four diverse, high-quality reference sets. Furthermore, we find that our scored data sets are more enriched with curated, direct physical associations than Y2H sets. A high-confidence protein interaction network (PIN) derived from the AP/MS data is revealed to be highly modular, and we show that this topology is not the result of misrepresenting indirect associations as direct interactions. In fact, we propose that the modularity in Y2H data sets may be underrepresented, as they contain indirect associations that are significantly enriched with false negatives. The AP/MS PIN is also found to contain significant assortative mixing; however, in line with a previous study we confirm that Y2H interaction data show weak disassortativeness, thus revealing more clearly the distinctive natures of the interaction detection methods. We expect that our scored yeast data sets are ideal for further biological discovery and that our scoring system will prove useful for other AP/MS data sets.
机译:大规模蛋白质相互作用网络(PINs)通常使用亲和纯化,质谱(AP / MS)和酵母双杂交(Y2H)技术进行识别。通常认为,Y2H筛查可检测直接的二元相互作用,而AP / MS方法可捕获复合物关联。但是,已知后一种技术会产生由多种效应(包括丰度)引起的普遍的误报。我们描述了一种新颖的方法来计算两种蛋白质在AP / MS数据集中共纯化的倾向,从而允许我们通过分析相互作用评分的相应分布来评估检测到的相互作用特异性水平。我们发现酵母的两个最近的AP / MS数据集与相应的随机配置文件相比,包含特定或高得分关联的富集,并且在两个著名的数据库中精选的直接物理交互作用始终具有很高的分数。与四个不同的高质量参考集相比,我们的得分互动数据集通常比以前的研究更全面。此外,我们发现,与Y2H集相比,我们的评分数据集更富于策展性,直接的物理关联。从AP / MS数据获得的高可信度蛋白质相互作用网络(PIN)被揭示为高度模块化,并且我们证明了这种拓扑结构并不是将间接关联错误表示为直接相互作用的结果。实际上,我们建议Y2H数据集中的模块化可能无法得到充分体现,因为它们包含间接关联,这些关联显着丰富了假阴性。还发现AP / MS PIN包含明显的分类混合。但是,根据先前的研究,我们确认Y2H相互作用数据显示弱的分解性,从而更清楚地揭示了相互作用检测方法的独特性质。我们希望我们评分的酵母数据集对于进一步的生物学发现是理想的,并且我们的评分系统将证明对其他AP / MS数据集有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号